图片 4

当然也可以有 16bit 的单声道或 8bit 的立体声,数据类型由该文件的扩展名来标识

莫斯代码

莫斯代码是一种文本编码方式。它的优点是编码方便,而且用人耳就能够方便的解码。本质上,是通过音频(或者无线电频)的开和关,从而形成或短或长的音频脉冲,一般称作点(dot)和线(dash),或者用无线电术语称作“嘀”和“嗒”。用现代数字通信术语,莫斯代码是一种振幅键控(amplitude
shift keying ,ASK)。

在莫斯代码中,字符(字母,数字,标点符号和特殊符号)被编码成一个“嘀”和“嗒”的序列。所以为了把文本转化成莫斯代码,我们首先要确定如何来表示“嘀”和“嗒”。一个很显然的选择就是,用0表示“嘀”,用1表示“嗒”,或者反过来。不幸的是,莫斯代码采用的是可变长编码方案。所以我们也必须要使用一种可变长序列,或者采取一种方式,把数据打包成一种计算机内存通用的固定位宽(fixed
bit-size)的格式。另外,需要特别注意的是,莫斯代码并不区分字母大小写,而且对一些特殊符号无法编码。在我们这个实现中,未定义的字符和符号将会被忽略。

在这个项目中,内存占用并不是一个需要特别考虑的问题。所以,我们提出一个简单的编码方案,即用“0”来表示每个“嘀”,用“1”来表示每个“嗒”,并且把他们放在一个字符串关联数组中。定义莫斯代码编码表的PHP代码就像下面这样:

$CWCODE = array ('A'=>'01','B'=>'1000','C'=>'1010','D'=>'100','E'=>'0',
     'F'=>'0010','G'=>'110','H'=>'0000','I'=>'00','J'=>'0111',
     'K'=>'101','L'=>'0100','M'=>'11','N'=>'10', 'O'=>'111',
     'P'=>'0110','Q'=>'1101','R'=>'010','S'=>'000','T'=>'1',
     'U'=>'001','V'=>'0001','W'=>'011','X'=>'1001','Y'=>'1011',
     'Z'=>'1100', '0'=>'11111','1'=>'01111','2'=>'00111',
     '3'=>'00011','4'=>'00001','5'=>'00000','6'=>'10000',
     '7'=>'11000','8'=>'11100','9'=>'11110','.'=>'010101',
     ','=>'110011','/'=>'10010','-'=>'10001','~'=>'01010',
     '?'=>'001100','@'=>'00101');

需要注意的是,如果你特别在意内存占用的话,上面的代码可以解释为位(bit)。给每个代码增加一个开始位,就可以形成一个位的模式,每个字符就可以用一个字节来储存。同时,当解析最终编码的时候,要删除开始位左边的位(bit),从而获得真正的变长编码。

尽管许多人没有意识到,事实上“时间间隔”是定义莫斯代码的主要因素,所以理解这一点是生成莫斯代码的关键。所以,我们要做的第一件事,就是定义莫斯代码的内部码(即“嘀”和“嗒”)的时间间隔。为了方便起见,我们定义一个“嘀”的声音长度为一个时间单位dt,“嘀”和“嗒”之间的间隔也是一个时间单位dt;定义一个“嗒”的长度为3个dt,字符(letters)之间的间隔也是3个dt;定义单词(words)之间的间隔是7个dt。所以,总结起来,我们的时间间隔表就像下面这样:

项目

时间长度

dt

“嘀”/“嗒”之间的间隔

dt

“嗒”

3*dt

字符之间的间隔

3*dt

单词之间的间隔

7*dt

在莫斯代码中,编码声音的“播放速度”通常用 单词数/分钟(WPM)
来表示。由于英文单词有不同的长度,而且字符也有不同数量的“嘀”和“嗒”,所以,从WPM转化成(音频)数字采样并不是看上去那样简单。在一份被国际组织采用的方案中,采用5个字符作为单词的平均长度,同时,一个数字或标点符号被当做2个字符。这样,平均一个单词就是50个时间单位dt。这样,如果你指定了WPM,那么我们总的播放时间就是
50 *
WPM的时间单位/分钟,每个“嘀”(即一个时间单位dt)的长度等于1.2/WPM秒。这样,给出一个“嘀”的时间长度,其他元素的时间长度很容易就能够计算出来。

你可能已经注意到,在上面显示的网页中,对于低于15WPM的选项,我们使用了“Farnsworth
spacing”。那么这个“Farnsworth spacing”又是个什么鬼?

当报务员学习用耳朵来解码莫斯代码的时候,他就会意识到,当播放速度变化的时候,字符出现的节奏也会跟着变化。当播放速度低于10WPM的时候,他能够从容的识别“嘀”和“嗒”,并且知道发送的哪个字符。但是当播放速度超过10WPM的时候,报务员的识别就会出错,他识别出来的字符会多于实际的“嘀”和“嗒”。当一个学习的时候习惯低速莫斯代码的人,在处理高速播放代码的时候,就会出现问题。因为节奏变了,他潜意识的识别就会出错。

为了解决这个问题,“Farnsworth
spacing”就被发明出来了。本质上来讲,字母和符号的播放速度依然采取高于15WPM的速度,同时,通过在字符之间插入更多的空格,来使整体的播放速度降低。这样,报务员就能够以一个合理的速度和节奏来识别每个字符,一旦所有的字符都学习完毕,就可以增加速度,而接收员只需要加快识别字符的速度就可以了。本质上来说,“Farnsworth
spacing”这个技巧解决了节奏变化这个问题,使接收员能够快速学习。

所以,在整个系统中,对于更低的播放速度,都统一成15WPM。相对应的,一个“嘀”的长度是0.08秒,但是字符之间和单词之间的间隔就不再是3个dit或者7个dit,而是进行的调整以适应整体速度。

莫斯代码

如果是双声道(stereo), 采样就是双份的, 文件也差不多要大一倍.

RIFF file format

RIFF全称为资源互换文件格式(Resources Interchange File
Format),是Windows下大部分多媒体文件遵循的一种文件结构。RIFF文件所包含的数据类型由该文件的扩展名来标识,能以RIFF格式存储的数据有(包含有:):

(文件格式和数据格式是两码事情)

  • 音频视频交错格式数据 .AVI
  • 波形格式数据 .WAV
  • 位图数据格式 .RDI
  • MIDI格式数据 .RMI
  • 调色板格式 .PAL
  • 多媒体电影 .RMN
  • 动画光标 .ANI
  • 其他的RIFF文件 .BND

生成声音

在PHP代码中,一个字符(即前面数组的索引)代表一组由“嘀”、“嗒”和空白间隔组成的莫斯声音。我们用数字采样来组成音频序列,并且将其写入到文件中,同时加上适当的头信息来将其定义成WAVE格式。

生成声音的代码其实相当简单,你可以在项目中PHP文件中找到它们。我发现定义一个“数字振荡器”相当方便。每调用一次osc(),它就会返回一个从正玄波产生的定时采样。运用声音采样和声频规范,生成WAVE格式的音频已经足够了。在产生的正玄波中的-1到+1之间是被移动和调整过的,这样声音的字节数据可以用0到255来表示,同时128表示零振幅。

同时,在生成声音方面我们还要考虑另外一个问题。一般来讲,我们是通过正玄波的开关来生成莫斯代码。但是你直接这样来做的话,就会发现你生成的信号会占用非常大的带宽。所以,通常无线电设备会对其加以修正,以减少带宽占用。

在我们的项目中,也会做这样的修正,只不过是用数字的方式。既然我们已经知道了一个最小声音样本“嘀”的时间长度,那么,可以证明,最小带宽的声幅发生在长度等于“嘀”的正玄波半周期。事实上,我们使用低通滤波器(low
pass
filter)来过滤音频信号也能达到同样的效果。不过,既然我们已经知道所有的信号字符,我们直接简单的过滤一下每一个字符信号就可以了。

生成“嘀”、“嗒”和空白信号的PHP代码就像下面这样:

while ($dt < $DitTime) {
  $x = Osc();
  if ($dt < (0.5*$DitTime)) {
    // Generate the rising part of a dit and dah up to half the dit-time
    $x = $x*sin((M_PI/2.0)*$dt/(0.5*$DitTime));
    $ditstr .= chr(floor(120*$x+128));
    $dahstr .= chr(floor(120*$x+128));
    }
  else if ($dt > (0.5*$DitTime)) {
    // For a dah, the second part of the dit-time is constant amplitude
    $dahstr .= chr(floor(120*$x+128));
    // For a dit, the second half decays with a sine shape
    $x = $x*sin((M_PI/2.0)*($DitTime-$dt)/(0.5*$DitTime));
    $ditstr .= chr(floor(120*$x+128));
    }
  else {
    $ditstr .= chr(floor(120*$x+128));
    $dahstr .= chr(floor(120*$x+128));
    }
  // a space has an amplitude of 0 shifted to 128
  $spcstr .= chr(128);
  $dt += $sampleDT;
  }
// At this point the dit sound has been generated
// For another dit-time unit the dah sound has a constant amplitude
$dt = 0;
while ($dt < $DitTime) {
  $x = Osc();
  $dahstr .= chr(floor(120*$x+128));
  $dt += $sampleDT;
  }
// Finally during the 3rd dit-time, the dah sound must be completed
// and decay during the final half dit-time
$dt = 0;
while ($dt < $DitTime) {
  $x = Osc();
  if ($dt > (0.5*$DitTime)) {
    $x = $x*sin((M_PI/2.0)*($DitTime-$dt)/(0.5*$DitTime));
    $dahstr .= chr(floor(120*$x+128));
    }
  else {
    $dahstr .= chr(floor(120*$x+128));
    }
  $dt += $sampleDT;
  }

尽管许多人没有意识到,事实上“时间间隔”是定义莫斯代码的主要因素,所以理解这一点是生成莫斯代码的关键。所以,我们要做的第一件事,就是定义莫斯代码的内部码的时间间隔。为了方便起见,我们定义一个“嘀”的声音长度为一个时间单位dt,“嘀”和“嗒”之间的间隔也是一个时间单位dt;定义一个“嗒”的长度为3个dt,字符之间的间隔也是3个dt;定义单词之间的间隔是7个dt。所以,总结起来,我们的时间间隔表就像下面这样:

    |          RIFF WAVE Chunk                |

RIFF chunk

标志为RIFF的chunk是比较特殊的,每一个RIFF文件首先存放的必须是一个RIFF
chunk,并且只能有这一个标志为RIFF的chunk
。RIFF的数据域的起始位置是一个4字节码(FOURCC),用于标识其数据域中chunk的数据类型;紧接着数据域的内容则是包含的subchunk,如下图
图片 1
这是一个RIFF chunk中包含有两个subchunk,可以看出RIFF
chunk的数据域首先是是4字节的 Form
Type,接着是两个subchunk,每一个subchun有包含有自己的标识、数据域的大小以及数据域。
除了RIFF cunk可以嵌套其他的chunk外,另一个可以有subchunk的就是LIST
chunk

图片 2
上图中,首先是RIFF文件必须的RIFF
chunk,其数据域又包含有两个subchunk,其中一个subchunk的类型为LIST,该LIST
chunk又包含了两个subchunk。

(list chunk 是否可以做首)

总结和评论

我们的文本莫斯代码生成器目前看起来还不错。当然,我们还可以对它做很多的修改和完善,比如使用其他字符集、直接从文件中读取文本、生成压缩音频等等。因为我们这个项目的目的是使其能够在网络上方便的使用,所以我们这个简单的方案,已经达到我们的目的了。

当然,一如既往的,希望大家对这些简单粗暴的代码提出建议。这些年来虽然一直有人在教我,但我还是缺乏莫斯代码相关背景知识,所以,如果出现任何的错误或遗漏都算是我的错。

$CWCODE = array ('A'=>'01','B'=>'1000','C'=>'1010','D'=>'100','E'=>'0', 'F'=>'0010','G'=>'110','H'=>'0000','I'=>'00','J'=>'0111', 'K'=>'101','L'=>'0100','M'=>'11','N'=>'10', 'O'=>'111', 'P'=>'0110','Q'=>'1101','R'=>'010','S'=>'000','T'=>'1', 'U'=>'001','V'=>'0001','W'=>'011','X'=>'1001','Y'=>'1011', 'Z'=>'1100', '0'=>'11111','1'=>'01111','2'=>'00111', '3'=>'00011','4'=>'00001','5'=>'00000','6'=>'10000', '7'=>'11000','8'=>'11100','9'=>'11110','.'=>'010101', ','=>'110011','/'=>'10010','-'=>'10001','~'=>'01010', '?'=>'001100','@'=>'00101');

 

关于扩展格式块

当WAV文件使用的不是PCM编码方式是,就需要扩展格式块,它是在基本的Format
chunk
又添加一段数据。该数据的前两个字节,表示的扩展块的长度。紧接其后的是扩展的数据区,含有扩展的格式信息,其具体的长度取决于压缩编码的类型。当某种编码方式(如
ITU G.711
a-law)使扩展区的长度为0,扩展区的长度字段还必须保留,只是其值设置为0。
扩展区的各个字节的含义如下:

  • size 2字节
    扩展区的数据长度 ,可以为0或22
  • valid_bits_per_sample 2字节
    有效的采样位数,最大值为采样字节数 *
    8。可以使用更灵活的量化位数,通常音频sample的量化位数为8的倍数,但是使用了WAVE_FORMAT_EXTENSIBLE时,量化的位数有扩展区中的valid bits per sample来描述,可以小于Format
    chunk中制定的bits per sample
  • channle mask 4字节
    声道掩码
  • sub format 16字节
    GUID,include the data format code,数据格式码。

在Format chunk中的format_tag置为0xFFFE时,表示使用扩展区中的sub_format来决定音频的数据的编码方式。在以下几种情况下必须要使用WAVE_FORMAT_EXTENSIBLE

  • PCM数据的量化位数大于16
  • 音频的采样声道大于2
  • 实际的量化位数不是8的倍数
  • 存储顺序和播放顺序不一致,需要指定从声道顺序到声卡播放顺序的映射情况

介绍

我最近遇到一个基于输入文本生成摩斯代码音频文件的需求。几番搜索无果之后,我决定自己编写一个生成器。

下载源代码 – 2.63
KB

图片 3

因为我希望通过web的方式访问我的摩斯代码音频文件,所以我决定采用PHP作为我主要的编程语言。上面的截图显示了一个开始生成莫斯代码的网页。在下载的zip文件中,包含了用于提交文本的网页以及用于生成和展现音频文件的PHP源文件。如果你想测试PHP代码,你需要将网页和相关的PHP文件复制到启用了PHP的服务器上。

对于许多人来说,莫斯代码就像一些老电影中表现的那样,就是一些“点”和“横线”的序列,或者一连串的哔哔声。显然,如果你想用计算机代码来生成莫斯代码,这样的了解是远远不够的。这篇文章将会介绍生成莫斯代码的要素,如何生成WAVE
格式的音频文件,以及如何用PHP将莫斯代码转化成音频文件。

因为我希望通过web的方式访问我的摩斯代码音频文件,所以我决定采用PHP作为我主要的编程语言。上面的截图显示了一个开始生成莫斯代码的网页。在下载的zip文件中,包含了用于提交文本的网页以及用于生成和展现音频文件的PHP源文件。如果你想测试PHP代码,你需要将网页和相关的PHP文件复制到启用了PHP的服务器上。

1 Typedef struct
2 {
3     WAVEFORMATEX  wfmt;
4 
5     WORD  nSamplesPerBlock;
6    
7 } IMAADPCMWAVEFORMAT;

CHUNK

chunk是RIFF文件的基本单元,其基本结构如下:

struct chunk
{
    uint32_t id;   // 块标志
    uint32_t size; // 块大小
    uint8_t data[size]; // 块数据
};
  • id
    4字节,用以标识块中所包含的数据。如:RIFF,LIST,fmt,data,WAV,AVI等,由于这种文件结构
    最初是由Microsoft和IBM为PC机所定义,RIFF文件是按照小端
    little-endian字节
    顺序写入的。
  • size 块大小 存储在data域中的数据长度,包含id和size的大小
  • data 包含数据,数据以为单位存放,如果数据长度为奇数(字节为单位),则最后添加一个空字节

chunk是可以嵌套的,但是只有块标志为RIFF或者LIST的chunk能包含其他的chunk

WAVE格式的文件

WAVE是一种通用的音频格式。从最简单的形式来看,WAVE文件通过在头部包含一个整数序列来表示指定采样率的音频振幅。关于WAVE文件的详细信息请查看这里Audio
File Format Specifications
website。对于产生莫斯代码,我们并不需要用到WAVE格式的所有参数选项,仅仅需要一个8位的单声道就可以了,所以,so
easy。需要注意的是,多字节数据需要采用低位优先(little-endian)的字节顺序。WAVE文件使用一种由叫做“块(chunks)”的记录组成的RIFF格式。

WAVE文件由一个ASCII标识符RIFF开始,紧跟着一个4字节的“块”,然后是一个包含ASCII字符WAVE的头信息,最后是定义格式的数据和声音数据。

在我们的程序中,第一个“块”包含了一个格式说明符,它由ASCII字符fmt和一个4倍字节的“块”。在这里,由于我使用的是普通脉冲编码调制(plain
vanilla
PCM)格式,所以每个“块”都是16字节。然后,我们还需要这些数据:声道数、声音采样/秒、平均字节/秒、一个区块(block)对齐指示器、位(bit)/声音采样。另外,由于我们不需要高质量立体声,我们只采用单声道,我们使用 11050采样/秒(标准的CD质量音频的采样率是 44200采样/秒)的采样率来生成声音,并且用8位(bit)保存。

最后,真实的音频数据储存在接下来的“块”中。其中包含ASCII字符data,一个4字节的“块”,最后是由字节序列(因为我们采用的是8位(bit)/采样)组成的真实音频数据。

在程序中,由8位音频振幅序列组成的声音保存在变量$soundstr中。一旦音频数据生成完毕,就可以计算出所有的“块”大小,然后就可以把它们合并在一起写入磁盘文件中。下面的代码展示了如何生成头信息和音频“块”。需要注意的是,$riffstr表示RIFF头,$fmtstr表示“块”格式,$soundstr表示音频数据“块”。

$riffstr = 'RIFF'.$NSizeStr.'WAVE';
$x = SAMPLERATE;
$SampRateStr = '';
for ($i=0; $i<4; $i++) {
  $SampRateStr .= chr($x % 256);
  $x = floor($x/256);
  }
$fmtstr = 'fmt '.chr(16).chr(0).chr(0).chr(0).chr(1).chr(0).chr(1).chr(0)
          .$SampRateStr.$SampRateStr.chr(1).chr(0).chr(8).chr(0);
$x = $n;
$NSampStr = '';
for ($i=0; $i<4; $i++) {
  $NSampStr .= chr($x % 256);
  $x = floor($x/256);
  }
$soundstr = 'data'.$NSampStr.$soundstr;

总结和评论

[3]http://hi.baidu.com/kindyb/blog/item/0a314f8859489c93a4c27297.html

Format chunk 中的编码方式

在Format
chunk中,除了有音频的数据的采样率、声道等音频的属性外,另一个比较主要的字段就是format_tag,该字段表示音频数据是以何种方式编码存放的。其具体的取值可以为以下:

  • 0x0001
    WAVE_FORMAT_PCM,采用PCM格式
  • 0x0003
    WAVE_FORMAT_IEEE_FLOAT,存放的值为IEEE
    float,范围为[-1.0f,1.0f]
  • 0x0006
    WAVE_FORMAT_ALAW , 8bit ITU-T G.711 A-law
  • 0x0007
    WAVE_FORMAT_MULAW,8bit ITU-T G.711 μμ-law
  • 0XFFFE
    WAVE_FORMAT_EXTENSIBLE,具体的编码方式有扩展区的
    sub_format字段决定

本文由码农网 –
风满楼原创翻译,转载请看清文末的转载要求,欢迎参与我们的付费投稿计划!

最后,真实的音频数据储存在接下来的“块”中。其中包含ASCII字符data,一个4字节的“块”,最后是由字节序列组成的真实音频数据。

这样我们就可以根据一个 wav 文件的大小、采样频率和采样大小估算出一个 wav
文件的播放长度。

WAV file

WAV
是Microsoft开发的一种音频文件格式,它符合上面提到的RIFF文件格式标准,可以看作是RIFF文件的一个具体实例。既然WAV符合RIFF规范,其基本的组成单元也是chunk。一个WAV文件通常有三个chunk以及一个可选chunk,其在文件中的排列方式依次是:RIFF
chunk,Format chunk,Fact chunk(附加块,可选),Data
chunk

图片 4

一个WAV文件,首先是一个RIFF chunk;RIFF chunk又包含有Format chunk,Data
chunk以及可选的Fact chunk。各个chunk中字段的意义如下:

  • RIFF chunk
    • id
      FOURCC 值为’R’ ‘I’ ‘F’ ‘F’
    • size
      其data字段中数据的大小 字节数
    • data
      包含其他的chunk
  • Format chunk
    • id
      FOURCC 值为 ‘f’ ‘m’ ‘t’ ‘ ‘
    • size
      数据字段包含数据的大小。如无扩展块,则值为16;有扩展块,则值为= 16 +
      2字节扩展块长度 +
      扩展块长度或者值为18(只有扩展块的长度为2字节,值为0)
    • data
      存放音频格式、声道数、采样率等信息

      • format_tag
        2字节,表示音频数据的格式。如值为1,表示使用PCM格式。
      • channels
        2字节,声道数。值为1则为单声道,为2则是双声道。
      • samples_per_sec
        采样率,主要有22.05KHz,44.1kHz和48KHz。
      • bytes_per sec
        音频的码率,每秒播放的字节数。samples_per_sec *
        channels * bits_per_sample /
        8,可以估算出使用缓冲区的大小
      • block_align
        数据块对齐单位,一次采样的大小,值为声道数 * 量化位数 /
        8,在播放时需要一次处理多个该值大小的字节数据。
      • bits_per_sample
        音频sample的量化位数,有16位,24位和32位等。
      • cbSize
        扩展区的长度
      • 扩展块内容
        22字节,具体介绍,后面补充。
  • Fact chunk(option)
    • id
      FOURCC 值为 ‘f’ ‘a’ ‘c’ ‘t’
    • size
      数据域的长度,4(最小值为4)
    • 采样总数 4字节
  • Data chunk
    • id
      FOURCC 值为’d’ ‘a’ ‘t’ ‘a’
    • size
      数据域的长度
    • data
      具体的音频数据存放在这里

采用压缩编码的WAV文件,必须要有Fact
chunk,该块中只有一个数据,为每个声道的采样总数

需要注意的是,如果你特别在意内存占用的话,上面的代码可以解释为位。给每个代码增加一个开始位,就可以形成一个位的模式,每个字符就可以用一个字节来储存。同时,当解析最终编码的时候,要删除开始位左边的位,从而获得真正的变长编码。

WAVE的基本结构 WAVEFORMATEX 结构定义如下:

Data chunk

Data块中存放的是音频的采样数据。每个sample按照采样的时间顺序写入,对于使用多个字节的sample,使用小端模式存放(低位字节存放在低地址,高位字节存放在高地址)。对于多声道的sample采用交叉存放的方式。例如:立体双声道的sample存储顺序为:声道1的第一个sample,声道2的第一个sample;声道1的第二个sample,声道2的第二个sample;依次类推….。对于PCM数据,有以下两种的存储方式:

  • 单声道,量化位数为8,使用偏移二进制码
  • 除上面之外的,使用补码方式存储。

WAVE文件由一个ASCII标识符RIFF开始,紧跟着一个4字节的“块”,然后是一个包含ASCII字符WAVE的头信息,最后是定义格式的数据和声音数据。

2. wave文件格式

总结

本文主要介绍了RIFF文件的格式和WAV音频文件格式,为后面实现对WAVE文件的读写打一个理论基础。后面打算使用C++标准库,实现对WAV文件的读写。

 

原文:

对于许多人来说,莫斯代码就像一些老电影中表现的那样,就是一些“点”和“横线”的序列,或者一连串的哔哔声。显然,如果你想用计算机代码来生成莫斯代码,这样的了解是远远不够的。这篇文章将会介绍生成莫斯代码的要素,如何生成WAVE
格式的音频文件,以及如何用PHP将莫斯代码转化成音频文件。

                                          采样率×每次采样大小。播放软件

FourCC

FourCC 全称为Four-Character
Codes,是一个4字节32位的标识符,通常用来标识文件的数据格式。例如,在音视频播放器中,可以通过 文件的FourCC来决定调用那种CODEC进行视音频的码。例如:DIV3,DIV4,DIVX,H264等,对于音频则有:WAV,MP3等。对于上面的RIFF文件,则有:RIFF,WAVE,fmt,data等。FourCC是4个ASCII字符,不足四个字符的则在最后补充空格(不是空字符)。比如,FourCC
fmt,实际上是’f’ ‘m’ ‘t’ ‘ ‘。
FourCC的生成通常可以使用如下宏:

#define MAKE_FOURCC(a,b,c,d) \
( ((uint32_t)d) | ( ((uint32_t)c) << 8 ) | ( ((uint32_t)b) << 16 ) | ( ((uint32_t)a) << 24 ) )

在程序
中还是不要使用太长的宏为好,在C++中可以使用模板和enum结合的方式。来保证在编译时期就能够将FourCC生成出来。

#define FOURCC uint32_t 
template <char ch0, char ch1, char ch2, char ch3> struct MakeFOURCC{ enum { value = (ch0 << 0) + (ch1 << 8) + (ch2 << 16) + (ch3 << 24) }; };
FOURCC fourcc_fmt = MakeFOURCC<'f', 'm', 't', ' '>::value;

将字符常量传入模板,在结构体中声明一个enum,编译器会在编译时期确定枚举值,这样就能给保证FOURCC在编译就能生成出来。

在莫斯代码中,字符被编码成一个“嘀”和“嗒”的序列。所以为了把文本转化成莫斯代码,我们首先要确定如何来表示“嘀”和“嗒”。一个很显然的选择就是,用0表示“嘀”,用1表示“嗒”,或者反过来。不幸的是,莫斯代码采用的是可变长编码方案。所以我们也必须要使用一种可变长序列,或者采取一种方式,把数据打包成一种计算机内存通用的固定位宽的格式。另外,需要特别注意的是,莫斯代码并不区分字母大小写,而且对一些特殊符号无法编码。在我们这个实现中,未定义的字符和符号将会被忽略。

                                          件内部格式信息。小写, 最后一个

生成声音

压缩的音频文件常常用位速来表示, 譬如达到 CD 音质的 MP3 是: 128kbps /
44100HZ.

WAVE格式的文件

    |          Fact Chunk(optional)           |

我们的文本莫斯代码生成器目前看起来还不错。当然,我们还可以对它做很多的修改和完善,比如使用其他字符集、直接从文件中读取文本、生成压缩音频等等。因为我们这个项目的目的是使其能够在网络上方便的使用,所以我们这个简单的方案,已经达到我们的目的了。

 

在程序中,由8位音频振幅序列组成的声音保存在变量$soundstr中。一旦音频数据生成完毕,就可以计算出所有的“块”大小,然后就可以把它们合并在一起写入磁盘文件中。下面的代码展示了如何生成头信息和音频“块”。需要注意的是,$riffstr表示RIFF头,$fmtstr表示“块”格式,$soundstr表示音频数据“块”。

 

当然,一如既往的,希望大家对这些简单粗暴的代码提出建议。

    —————————————

最近遇到一个基于输入文本生成摩斯代码音频文件的需求。几番搜索无果之后,我决定自己编写一个生成器。

首先存储低有效字节,表示样本幅度的位放在i的高有效位上,剩下的位置为0,这样8位和16位的PCM波形样本的数据格式如下所示。

while  { $x = Osc(); if  { // Generate the rising part of a dit and dah up to half the dit-time $x = $x*sin*$dt/; $ditstr .= chr; $dahstr .= chr; } else if  { // For a dah, the second part of the dit-time is constant amplitude $dahstr .= chr; // For a dit, the second half decays with a sine shape $x = $x*sin*/; $ditstr .= chr; } else { $ditstr .= chr; $dahstr .= chr; } // a space has an amplitude of 0 shifted to 128 $spcstr .= chr; $dt += $sampleDT; }// At this point the dit sound has been generated// For another dit-time unit the dah sound has a constant amplitude$dt = 0;while  { $x = Osc(); $dahstr .= chr; $dt += $sampleDT; }// Finally during the 3rd dit-time, the dah sound must be completed// and decay during the final half dit-time$dt = 0;while  { $x = Osc(); if  { $x = $x*sin*/; $dahstr .= chr; } else { $dahstr .= chr; } $dt += $sampleDT; }

  fcc type          4       char      “WAVE” 类型块标识, 大写。

同时,在生成声音方面我们还要考虑另外一个问题。一般来讲,我们是通过正玄波的开关来生成莫斯代码。但是你直接这样来做的话,就会发现你生成的信号会占用非常大的带宽。所以,通常无线电设备会对其加以修正,以减少带宽占用。

参考资料:

当报务员学习用耳朵来解码莫斯代码的时候,他就会意识到,当播放速度变化的时候,字符出现的节奏也会跟着变化。当播放速度低于10WPM的时候,他能够从容的识别“嘀”和“嗒”,并且知道发送的哪个字符。但是当播放速度超过10WPM的时候,报务员的识别就会出错,他识别出来的字符会多于实际的“嘀”和“嗒”。当一个学习的时候习惯低速莫斯代码的人,在处理高速播放代码的时候,就会出现问题。因为节奏变了,他潜意识的识别就会出错。

PCM(Pulse Code Modulation)也被称为
脉码编码调制。PCM中的声音数据没有被压缩,如果是单声道的文件,采样数据按时间的先后顺序依次存入。(它的基本组织单位是BYTE(8bit)或WORD(16bit))

$riffstr = 'RIFF'.$NSizeStr.'WAVE';$x = SAMPLERATE;$SampRateStr = '';for  { $SampRateStr .= chr; $x = floor; }$fmtstr = 'fmt '.chr.chr.chr .$SampRateStr.$SampRateStr.chr.chr;$x = $n;$NSampStr = '';for  { $NSampStr .= chr; $x = floor; }$soundstr = 'data'.$NSampStr.$soundstr;

 

在我们的程序中,第一个“块”包含了一个格式说明符,它由ASCII字符fmt和一个4倍字节的“块”。在这里,由于我使用的是普通脉冲编码调制格式,所以每个“块”都是16字节。然后,我们还需要这些数据:声道数、声音采样/秒、平均字节/秒、一个区块/声音采样。另外,由于我们不需要高质量立体声,我们只采用单声道,我们使用
11050采样/秒(标准的CD质量音频的采样率是
44200采样/秒)的采样率来生成声音,并且用8位保存。

cksize              4       int32     文件长度。这个长度不包括”RIFF”标志

所以,在整个系统中,对于更低的播放速度,都统一成15WPM。相对应的,一个“嘀”的长度是0.08秒,但是字符之间和单词之间的间隔就不再是3个dit或者7个dit,而是进行的调整以适应整体速度。

非PCM格式的文件会至少多加入一个 “fact”
块,它用来记录数据(注意是数据而不是文件)解压缩后的大小。这个 “fact”
块一般加在 “data” 块的前面。

莫斯代码是一种文本编码方式。它的优点是编码方便,而且用人耳就能够方便的解码。本质上,是通过音频的开和关,从而形成或短或长的音频脉冲,一般称作点,或者用无线电术语称作“嘀”和“嗒”。用现代数字通信术语,莫斯代码是一种振幅键控(amplitude
shift keying ,ASK)。

    |          ID = “fact”                    |

在这个项目中,内存占用并不是一个需要特别考虑的问题。所以,我们提出一个简单的编码方案,即用“0”来表示每个“嘀”,用“1”来表示每个“嗒”,并且把他们放在一个字符串关联数组中。定义莫斯代码编码表的PHP代码就像下面这样:

 

WAVE是一种通用的音频格式。从最简单的形式来看,WAVE文件通过在头部包含一个整数序列来表示指定采样率的音频振幅。关于WAVE文件的详细信息请查看这里Audio
File Format Specifications
website。对于产生莫斯代码,我们并不需要用到WAVE格式的所有参数选项,仅仅需要一个8位的单声道就可以了,所以,so
easy。需要注意的是,多字节数据需要采用低位优先的字节顺序。WAVE文件使用一种由叫做“块”的记录组成的RIFF格式。

 

生成“嘀”、“嗒”和空白信号的PHP代码就像下面这样:

    ——————————————-

在我们的项目中,也会做这样的修正,只不过是用数字的方式。既然我们已经知道了一个最小声音样本“嘀”的时间长度,那么,可以证明,最小带宽的声幅发生在长度等于“嘀”的正玄波半周期。事实上,我们使用低通滤波器来过滤音频信号也能达到同样的效果。不过,既然我们已经知道所有的信号字符,我们直接简单的过滤一下每一个字符信号就可以了。

  [fact data]       4       int32     解压后的音频数据的大小(Bytes).

生成声音的代码其实相当简单,你可以在项目中PHP文件中找到它们。我发现定义一个“数字振荡器”相当方便。每调用一次osc(),它就会返回一个从正玄波产生的定时采样。运用声音采样和声频规范,生成WAVE格式的音频已经足够了。在产生的正玄波中的-1到+1之间是被移动和调整过的,这样声音的字节数据可以用0到255来表示,同时128表示零振幅。

 

你可能已经注意到,在上面显示的网页中,对于低于15WPM的选项,我们使用了“Farnsworth
spacing”。那么这个“Farnsworth spacing”又是个什么鬼?

经常见到这样的描述: 44100HZ 16bit stereo 或者 22050HZ 8bit mono 等等.

在莫斯代码中,编码声音的“播放速度”通常用 单词数/分钟
来表示。由于英文单词有不同的长度,而且字符也有不同数量的“嘀”和“嗒”,所以,从WPM转化成数字采样并不是看上去那样简单。在一份被国际组织采用的方案中,采用5个字符作为单词的平均长度,同时,一个数字或标点符号被当做2个字符。这样,平均一个单词就是50个时间单位dt。这样,如果你指定了WPM,那么我们总的播放时间就是
50 *
WPM的时间单位/分钟,每个“嘀”的长度等于1.2/WPM秒。这样,给出一个“嘀”的时间长度,其他元素的时间长度很容易就能够计算出来。

 

为了解决这个问题,“Farnsworth
spacing”就被发明出来了。本质上来讲,字母和符号的播放速度依然采取高于15WPM的速度,同时,通过在字符之间插入更多的空格,来使整体的播放速度降低。这样,报务员就能够以一个合理的速度和节奏来识别每个字符,一旦所有的字符都学习完毕,就可以增加速度,而接收员只需要加快识别字符的速度就可以了。本质上来说,“Farnsworth
spacing”这个技巧解决了节奏变化这个问题,使接收员能够快速学习。

音频视频交错格式数据(.AVI) 、波形格式数据(.WAV) 、位图格式数据(.RDI)
、MIDI格式数据(.RMI) 、调色板格式(.PAL) 、多媒体电影(.RMN)
、动画光标(.ANI) 、其它RIFF文件(.BND)。

在PHP代码中,一个字符代表一组由“嘀”、“嗒”和空白间隔组成的莫斯声音。我们用数字采样来组成音频序列,并且将其写入到文件中,同时加上适当的头信息来将其定义成WAVE格式。

    |          ID = “data”                    |

                                         
据,以便将其值用于缓冲区的调整。

  ckid              4       char      表示 “data”
chunk的开始。此块中包含

  cksize            4       int32     音频数据的长度

WAVE文件是由若干个Chunk组成的。按照在文件中的出现位置包括:RIFF WAVE
Chunk, Format Chunk, Fact Chunk(可选), Data Chunk。具体见下图:

 

    =======================================

 

 

 

    ——————————————-

         图   Fact Chunk

 

                                          利用此值可以估计缓冲区的大小。

    |  ID  | 4Bytes |      “fact”         |

  [cksize]          4       int32     “fact” chunk data size.

而对于双声道立体声声音文件,每次采样数据为一个16位的整数(int),高八位(左声道)和低八位(右声道)分别代表两个声道。

发表评论

电子邮件地址不会被公开。 必填项已用*标注

相关文章